位相補間回路の高精度化に関する検討

Consideration for Accurate Phase Interpolator

桂木 真希彦

タライル ナラヤナン アラビンド

岡田 健一

松澤 昭

Makihiko Katsuragi

Aravind Tharayil Narayanan

Kenichi Okada

Akira Matsuzawa

東京工業大学 大学院理工学研究科 電子物理工学専攻 Department of Physical Electronics, Tokyo Institute of Technology

1 まえがき

同一のハードウェアで様々な無線通信規格に対応できるソ フトウェア無線技術において、高い基準周波数を用いつつも 高分解能な周波数制御が可能な Fractional-N 型の PLL が広く 用いられている。従来は分周器の分周比を動的に切り替える ことにより分数分周を実現していたが、近年注目されている Sub-Sampling PLL においては分周器を用いない分数分周の実 現が求められている。

その実現方法の一つとして、位相補間回路を用いて VCO の 出力信号を多位相に分割し、参照信号との比較に使う位相を 順次切り替えることで分数分周を実現する方法がある[1]。こ の方法では位相補間回路の精度が PLL のジッタ性能に大きく 影響することから、本研究では位相補間回路の高精度化につ いて検討を行った。

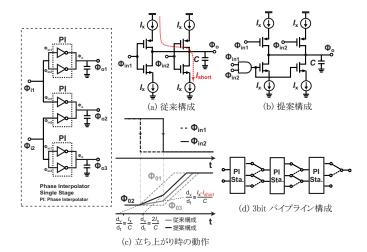
2 従来構成

従来のインバータを用いた位相補間回路 [2] の構成を図 1 に 示す。位相の異なる Φ_{i1} , Φ_{i2} を入力すると、各入力を反転さ せた $\Phi_{\mathrm{ol}},\Phi_{\mathrm{o3}},$ およびその中間の位相 Φ_{o2} を出力する。位相補 間回路は図 1(a) のような 2 つのインバータから構成されてお り、それぞれが電流 I_x で出力端の容量 C に充放電を行う。

位相補間回路の立ち上がり時の動作を説明する。 Φ_{o1}, Φ_{o3} はそれぞれ Φ_{i1} , Φ_{i2} の立ち下がりの瞬間から $\frac{dV}{dt} = \frac{2I_x}{C}$ の傾きで立ち上がる。一方、 Φ_{o2} は Φ_{i1} の立ち下がりの瞬間から $\frac{1}{C}=rac{I_{
m X}}{C}$ の傾きで立ち上がり始め、 $\Phi_{
m i2}$ の立ち下がりの瞬間から $\frac{1}{C}=rac{I_{
m X}}{C}$ の傾きで立ち上がり始め、 $\Phi_{
m i2}$ の立ち下がりの瞬間かん $\frac{1}{C}$ ら $\frac{dV}{dt} = \frac{2I_{\mathrm{x}}}{C}$ の傾きで立ち上がる。こうして $\Phi_{\mathrm{o}2}$ は、 $\Phi_{\mathrm{o}1}$ と Φ_{o3} の中間位相での立ち上がりを実現する。

しかし実際には図 1(c) のように、 Φ_{i1} の立ち下がりから, Φ_{i2} の立ち下がりまでの間、 Φ_{in1} 側の PMOS と, Φ_{in2} 側の NMOS が同時に ON になることにより貫通電流が流れる。これによっ て、電流 Ix が全て充電に使われず、位相補間の精度が劣化す る問題があった。

3 提案構成


提案構成を図 1(b) に示す。提案構成では、 Φ_{in1} と Φ_{in2} が共 に High であるときのみ NMOS が ON になるように制御して いる。これによって、 Φ_{inl} が立ち下がった瞬間に両側の NMOS が OFF になるため、貫通電流を防ぐことができる。

また、従来構成ではnビットの位相出力のために 2^{n-1} 個の 位相補間回路が必要であったが、図 1(d) のようなパイプライ ン型の構成 [3] を用いることで必要な回路ブロックを n 個まで 削減し、消費電力と面積の削減を実現した。

シミュレーション結果および性能比較は表1の通りである。

4 結論

位相補間回路において、従来の課題であった貫通電流を防 ぐような構成を提案した。これに加えて、パイプライン型の構 成を用いることで、高精度・低消費電力・小面積な位相補間回 路を実現した。

位相補間回路の構成と動作

表 1 位相補間回路の性能比較

	This	[4]	[5]	[3]
bits	3	8	2	6
Input Freq. [GHz]	0.5 - 3.0	0.1 - 1.5	0.3	0.025 - 0.25
INL [LSB]	< 0.5	1.33	-	2.07
DNL [LSB]	< 0.6	0.5	1.06	0.91
Power/Freq	0.53	2.9	0.038	0.12
[mW/GHz]				
Area [mm ²]	0.003	0.06	-	-

謝辞

本研究の一部は、総務省委託研究『電波資源拡大のための研究開 発』、総務省 SCOPE、半導体理工学研究センター、東工大基金、並び に東京大学大規模集積システム設計教育研究センターを通し、日本ケ イデンス株式会社、メンター株式会社の協力で行われたものである。

- [1] A. T. Narayanan, et al., "A Fractional-N Sub-Sampling PLL using a Pipelined Phase-Interpolator with an FoM of -246dBc/Hz," IEEE European Solid-State Circuits Conference, Sept. 2015.
- [2] B. W. Garlepp, et al., "A Portable Digital DLL for High-Speed CMOS Interface Circuits," IEEE Journal of Solid-State Circuits, May 1999.
- [3] S. Kumaki, et al., "A 0.5V 6-bit Scalable Phase Interpolator," IEEE Asia Pacific Conference on Circuits and Systems, Dec. 2010.
- [4] M. S. Chen, et al., "A 0.1-1.5 GHz 8-bit Inverter-Based Digital-to-Phase Converter Using Harmonic Rejection," IEEE Journal of Solid-State Circuits, Nov. 2013.
- [5] A. Nicholson, et al., "A 1.2V 2-bit phase interpolator for 65nm CMOS," IEEE International Symposium on Circuits and Systems, May 2012.