注入同期を利用した 自動合成配置配線可能な All Digital Synthesizable PLL

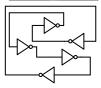
中田 憲吾, Deng Wei, Yang Dongsheng, 上野 智大, Narayanan Tharayil Aravind, Siriburanon Teerachot, 近藤 智史, 岡田 健一, 松澤 昭 東京工業大学 松澤・岡田研究室

1. 研究背景

PLL(位相同期回路)

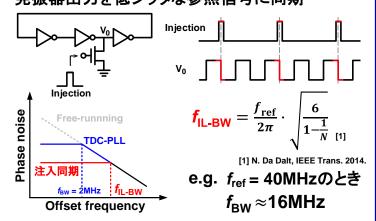
従来アナログカスタム設計が必要

Synthesiazble PLL


デジタル設計ツールのみで合成

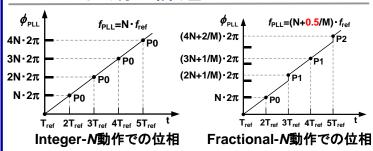
- Digital design flow - スケーラビィリティ
- プロセス移植性
- 設計時間&コスト削減

課題:Layout uncertainty


Lavout

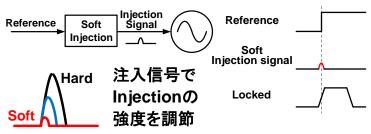
Verilog

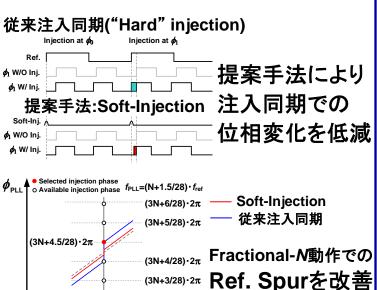
- 😊 自動レイアウトによりTDC,DCOの線形性劣化 →TDCベースのPLLではジッタ劣化
- 従来手法 注入同期を利用したジッタの改善


2. 注入同期PLL(IL-PLL)

·注入同期方式(Injection Lock) 発振器出力を低ジッタな参照信号に同期

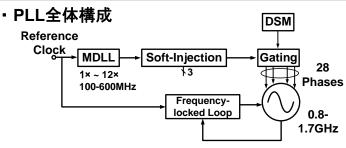
○ 広い帯域によりジッタ改善可能かつ 自動レイアウトでのジッタ劣化を回避

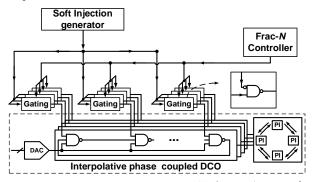

3. 注入同期の課題



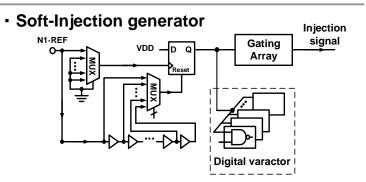
注入同期での大きな位相変化により

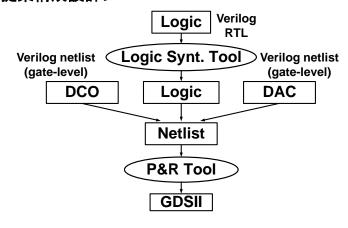
- ❷ Ref. Spur 大(従来:-40dBc)
- ❷ Integer-N動作に限定


4. 提案手法:Soft-Injection

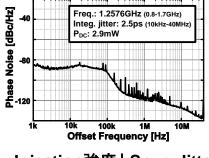


Soft-Injectionによる位相変化

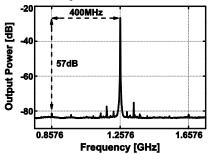

4. 提案回路構成


- カスケード構造により高い周波数で注入同期
- ・Multiphase DCOを用いたFractional-N動作

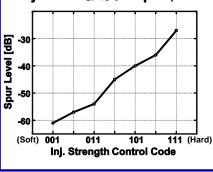
- Multiphase DCOにより28の位相に注入選択可能
- PI(Phase Interpolator)を利用し、各位相を補正



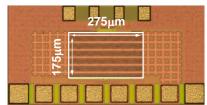
- 提案構成設計フロー



5. 測定結果


·Phase noise測定結果

▪Ref. Spur測定結果



•Injection強度とSpur, Jitter

(Soft) 001 011 101 111 (Hard)
Inj. Strength Control Code

·Synthesizable PLL チップ写真

•性能比較

	This work	[1]	[2]
Technology	65nm	65nm	65nm
Power [mW]	2.9 @1.2576GHz	0.78 @0.9GHz	13.7 @2.5GHz
Area [mm²]	0.048	0.0066	0.04
Integ. Jitter [ps]	2.5	1.7	3.2*
FOM [dB]	-227	-237	-219*
Topology	Soft-IL	IL	TDC-based
Туре	Frac-N	Integer-N	
Synthesized?	YES		

*FOM is calculated based on RMS jitter.

[1] W. Deng, et al., ISSCC 2014 [2] Y. Park, et al., CICC 2011

6. 結論

- 世界初Synthesizable PLLでFractional-N動作を実現した。
- Soft-Injectionにより、注入同期において、Ref. Spurを-57dBc(従来:-40dBc)
 に抑えることが可能になった。

謝辞

本研究の一部は、総務省委託研究『電波資源拡大のための研究開発』、総務省SCOPE、科学研究費補助金、半導体理工学研究センター、東工大基金、並びに東京大学大規模集積システム設計教育研究センターを通し、日本ケイデンス株式会社、シノプシス株式会社およびメンター株式会社の協力で行われたものである。