A 20GHz Push-Push Voltage-Controlled Oscillator for a 60GHz Frequency Synthesizer

Teerachot Siriburanon, Takahiro Sato, Ahmed Musa, Wei Deng, Kenichi Okada and Akira Matsuzawa Matsuzawa and Okada Lab, Tokyo Institute of Technology, Japan

1. Motivation • 60 GHz Communications - 9 GHz unlicensed band at 60 GHz • Several Gbps wireless communications - 3.5 Gbps/ch (QPSK) - 7 Gbps/ch (16QAM)

2. Conventional 60GHz LOs b) 30GHz PLL + a) 60GHz QPLL **Polyphase Filter** 9GHz tuning 60GHz Low quality Phase Q+ factor for capacitor 30GHz [2] UCB, ISSCC 2009 [1] IMEC, ISSCC 2009 c) 20GHz PLL + Injection Locked Oscillator 60GHz ILO 20 GHz OSC 20 GHz PN 60GHz PN +20Log N f (Hz) **Best phase noise reported** [3] Titech, *JSSC 2011*

3. Design Considerations

- Higher Quality Factor of LCresonator tank
- Less concern for parasitic capacitance
- Power-hungry high frequency prescaler can be eliminated
- At 10GHz, the quaility factor of LC resonator is relatively higher than that at 20GHz.

Proposed 60GHz Quadrature LO using a 20GHz pushpush VCO in a 20GHz PLL

Requirements for a VCO in a 60GHz Sub-harmonic Injection Architecture

	10GHz	20GHz	60GHz
Phase noise@1MHz offset (dBc/Hz)	-106	-100	-90
Tuning range (GHz)	9.5-11	19-22	57-66

5. Measurement Results

Chip microphptograph

Phase noise characteristic

	Features	CMOS Tech.	Frequency [GHz]	Phase noise [dBc/Hz]	Power [mW]	FoM [dBc/Hz]	Output type
[1]	QVCO@60GHz	45nm	57-66	-75@1MHz	28.8	-157	Quad.
	Direct 60GHz QPLL	45nm	57-66	-75@1MHz	78	-	Quad.
[2]	Push-push VCO@30GHz	90nm	29.8-32	-79@1MHz	9.8	-159	Diff.
	VCO + Polyphase filter	90nm	59.6-64	-73@1MHz	76	-	Quad.
[3]	VCO@20GHz	65nm	17.9-21.2	-106@1MHz	19	-179	Diff.
	Sub-harmonic Injection	65nm	58-63	-96@1MHz	80	-	Quad.
This work	Push-push VCO@10GHz	65nm	16.1-19.6	-106@1MHz	10.3	-181	Diff.
	Sub-harmonic Injection (based on calculation)	65nm	48.3-58.8	-96@1MHz	-	-	Quad.

The proposed 20GHz push-push VCO based on a 10GHz super-harmonic coupled QVCO achieves an improvement of 2.3dB in FoM over previously-implemented 20GHz VCO [3]