Design of 0.5-V LC-VCO for Low-voltage and Low-jitter Clock Generator

ウェイ デン Wei Deng 岡田 健一 Kenichi Okada 松澤 昭 Akira Matsuzawa

東京工業大学大学院理工学研究科電子物理工学専攻 Department of Physical Electronics, Tokyo Institute of Technology

1 Introduction

Conventionally, ring oscillators are widely adopted in clock generation. Along with the scaling of the supply voltage, ring oscillators become infeasible due to too large jitter and power consumption[1], which highlight the necessity of adopting LC-VCOs as clock generators in future 0.5-V LSI. However, LC-VCOs suffer from narrow tuning range which is a key issue for clock generator to deal with different applications and compensate the variations in PVT. In this paper, a 0.5-V LC-VCO with frequency-extension circuit is proposed for low-voltage and low-jitter clock generation.

2 Proposed Architecture

As shown in Fig. 1 the proposed circuit is composed of a core VCO, the first divider and the second stage chain^[2]. The first divider is a switchable divider whose divide ratio can be controlled from 2 to 3. The second divider chain consists of 6 successive dividers whose divide ratio is 2. Frequency planning of the proposed architecture is also illustrated in Fig.1. The fundamental frequency f_0 is output of core VCO, which can be tuned from 4.1-to-6.4GHz. $1/2f_0$ and $1/3f_0$ are generated by the first divider with switchable divide ratio, which means that the continuous tuning range of 2.05to-3.2GHz and 1.37-to-2.13GHz can be obtained with the divide-by-2 and divide-by-3 operation, respectively. Lower frequency range from 0.05-to-1.37GHz can be generated by the second divider chain. As a result, the architecture provides two bands distributed from 0.05-to-3.2GHz (band I) and 4.1-to-6.4GHz (band II), minimizing power consumption.

3 Measure Results

For silicon verification, the proposed circuit is fabricated in a standard 9-metal-layer 90nm CMOS process. Phase-noise characteristics for each divide ratio (divide-by-2 and divide-by-3) of the first divider stage are illustrated in Fig. 2. A die photo is shown in Fig. 3. The core chip area is only 0.15mm².

4 Conclusion

As addressed in this paper, the investigation of adopting LC-VCOs to replace ring oscillators will become essential during the design of future low-voltage

Fig. 3 Chip micrograph

and low-jitter clock generators.

Acknowledgment

This work was partially supported by MIC, MEXT, STARC, NEDO, Canon Foundation, and VDEC in collaboration with Cadence Design Systems, Inc., and Agilent Technologies Japan, Ltd.

Reference

- K. Okada, et al., "A 0.114mW dual-coduction class-C CMOS VCO with 0.2-V power supply," *IEEE symp. VLSI Circuits*, pp.228-229, Jun. 2009.
- [2] W. Deng, et al., "A 0.5-V, 0.05-to-3.2 GHz, 4.1-to-6.4 GHz LC-VCO using E-TSPC frequency divider with forward body bias for sub-picosecond-jitter clock generation," *IEEE A-SSCC Dig. Tech. Papers*, pp.93-96, Nov. 2010.