Multi-Line De-Embedding Technique for Millimeter-Wave Circuit Design

Qing-Hong Bu, Ning Li, Naoki Takayama, Kenichi Okada and Akira Matsuzawa Matsuzawa and Okada Laboratory, Tokyo Institute of Technology, Japan

1 Background

On-wafer measurement needs contact pads

- Measurement data includes the device under test (DUT) and the pad parasitic components.
- –At millimeter wave (MMW), parasitic components are not negligible.

Device Measurement

Contact Pads

De-Embedding

 Remove parasitic components from measurement data

Parasitics of pad

De-embedding process

2 Conventional de-embedding method

Open-short de-embedding method

- Difficult to get the ideal patterns at high frequency (MMW)
- Thru-only de-embedding method

- The through-line is required to be very short
- Probe coupling

3 Proposed de-embedding method

Two transmission lines

Pad model

- -Based on distributed-constant approach
- -Doesn't need "Short" or "Short-Line"

$$Y_{shunt} = \frac{Y_{pad}^{(1,1)+Y_{pad}^{(2,1)+Y_{pad}^{(1,2)+Y_{pad}^{(2,2)}}}}{\text{Shunt Impedance}}$$

4 Results and Conclusion

- •De-embedding of different-length TLs
- $(200 \mu m$ and $400 \mu m)$
- •Compare Z_0 , α , β

- $\stackrel{\circ}{ ext{(S)}}$ -Thru-only gives a large difference in lpha
- $\stackrel{\bigcirc}{\odot}$ -Up to 80GHz, the error in Z₀, α, β is less than 5.5%, 2% and 3% respectively by using the proposed method.