R5-11 Asynchronous Differential Capacitance-to-Digital Converter for Capacitive Sensors

Tuan Minh Vo, Yasuhide Kuramochi, Masaya Miyahara, Takashi Kurashina, Akira Matsuzawa Department of Physical Electronics, Tokyo Institute of Technology

1. Background

- 1. Increasing of research activities in low invasive diagnosis systems recently
- 2. The system needs to be very small size and low power
- 3. Utilizing of capacitive sensor in the system

2. Asynchronous Processing and Dynamic Comparator

- 1. Lower speed clock $f_{CLK} = f_{Sampling}$
- 2. Intermittent movement

- 1. No static current
 - 2. High sensitivity

3. Differential Architecture

$$V_{\rm X} - V_{\rm Y} = \frac{(2^9 B_9 + ... + 2^n B_n) \frac{1}{2^4} C - k C_{\rm X_sam}}{2 C_{\rm X_con} + \left[C_{\rm m} + 2^5 C + ... + C + \frac{C_{\rm S} (2^3 C + ... + C)}{C_{\rm S} + 2^3 C + ... + C} \right]} 2 V_{\rm ref}$$

- 1. Define every bit step by step based on comparison result of V_X and
- 2. The comparison is not affected from $C_{\rm X}$ con during conversion phase
- 3. Higher immunity to Vcm fluctuation, noise… than single-ended architecture

4. Simulation Results

Technology	180 nm CMOS
Supply Voltage	1.4 V
Resolution	10 Bit
Current Consumption	29.7 μA (with clock)
	8.45 μA (w/o clock)
Conversion Frequency	262 kSps
Core Size	0.13 mm^2
	$(C_{\rm m} = 10 \rm pF x 2)$

5. Summary

- 1. A 10-bit very low power, small size direct Capacitance-to-Digital Converter is realized based on Charge Redistribution architecture
- 2. Asynchronous processing and a dynamic comparator lower power of the entire circuit
- 3. Differential architecture makes the circuit unaffected by the sensor variation

