

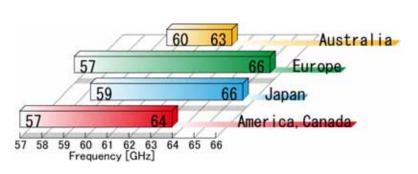
CMOSプロセスによる60GHz帯 無線送信回路の開発

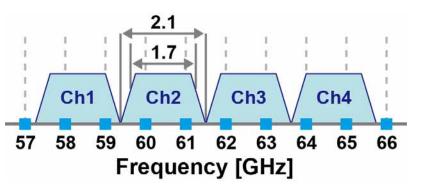
高山 直輝, 松下 幸太, 岡田 健一, 松澤 昭

東京工業大学

大学院理工学研究科電子物理工学専攻

目次

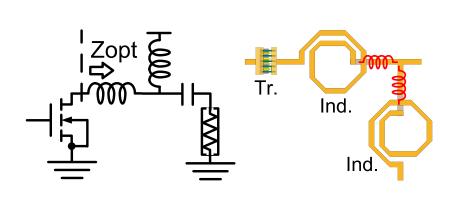

- 研究背景
- 研究課題
- モデリング
 - トランジスタ
 - デカップリングキャパシタ
- 回路
 - 4-stage PA
 - PA + Up-conversion Mixer
- 測定結果
- まとめ

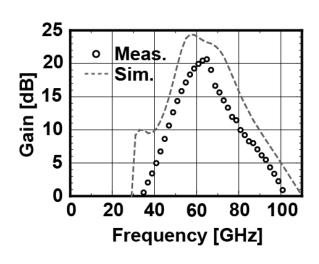

研究背景

TOKYO TECH Pursuing Excellence

- 60GHz帯
 - 幅の広い帯域が無免許で使用可能
 - 超高速近距離無線通信への適応の期待大
 - IEEE 802.15.3c
 - 1.7 GHz × 4 ch
 - QPSK 14 Gbps, 64QAM 42 Gbps

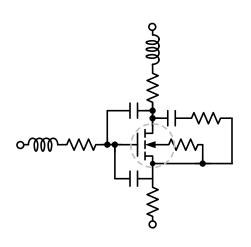
無免許で使用可能な 周波数帯域

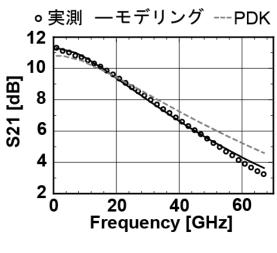

IEEE 802.15.3c


ミリ波帯CMOS回路の課題

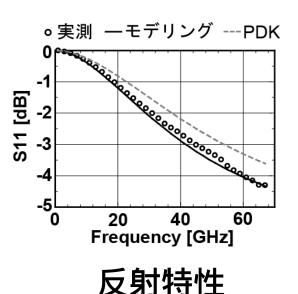
- 寄生成分の影響が大きい
 - 素子特性のFab.提供モデルとのズレ
 - 配線によるインピーダンスのズレ シミュレーションの回路性能と実測が合わない
 - 素子、配線のモデリングが必要

マッチングブロック

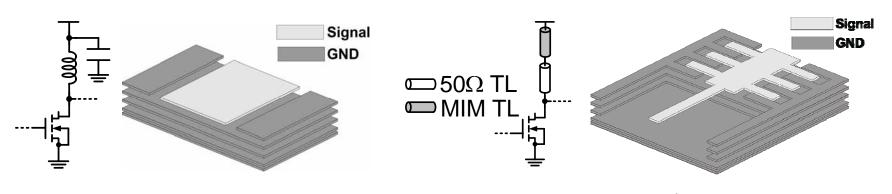

PAの特性


トランジスタのモデリング

- 寄生成分を付け足し、測定データと合わせる
 - トランジスタの利得
 - 誤差 1 dB
- $0.2 \, \mathrm{dB}$


- 反射特性
 - 誤差 0.8 dB 0.1 dB

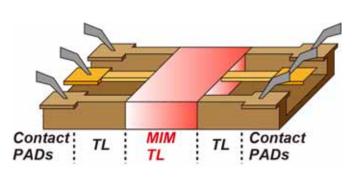
モデル回路

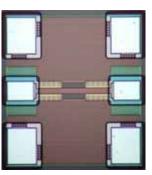

利得特性

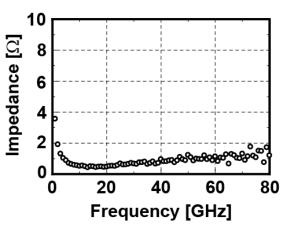
& Okada Lab.

デカップリングキャパシタの構造

- 低周波でのモデル
 - 平面構造
 - 集中定数として使用60GHz手前で自己共振
- ミリ波帯でのモデル
 - インターディジタル型
 - L、Cを分散させ、共振周波数を高める
 - 伝送線路としてモデリング

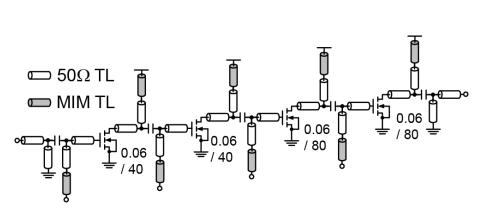

低周波モデル


高周波モデル

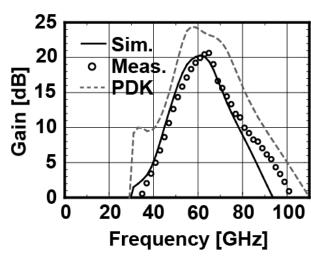

デカップリングキャパシタのモデリングァ

- MIM-TL、TL、パッドから成るTEGを試作
 - 測定データよりPADの成分を引く
 - TLのモデルより伝送線路部分を引く
- そのデータと合うようにMIM-TLのモデルを作製
 - 特性インピーダンス: 1Ω程度

MIM-TLOTEG

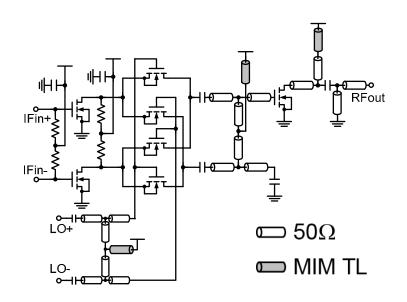


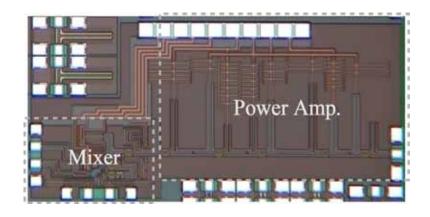
MIM-TLの 特性インピーダンス



パワーアンブ

- 回路構成
 - モデリングした各素子を用いて設計
 - 4-stage
- 測定結果
 - 素子のモデリングにより、シミュレーションの精度が向上
 - Sim.-Meas.誤差 5dB 0.5dB以下


パワーアンプ回路図


回路利得の測定結果

パワーアンプ + アップコンミキサ

- CMOS65nmプロセスを用いて試作
- パッシブミキサ+IFバッファ+RFバッファ
- IFの入力は50Ωの抵抗で終端
- 他のポートは伝送線路でマッチング
- 単相出力にするため、出力の片側をCで終端

ミキサ回路図

PA+Mix. Chip写真

測定結果&性能比較

- PA + Up-conversion Mixer
 - 変換利得:10.6 dB, P1dB:1.6 dBm
 - 57 ~ 66GHzの帯域において動作を確認

	Blocks	Freq.	Gain	P1dB	PDC	PLO	VDD
		[GHz]	[dB]	[dBm]	[mW]	[dBm]	[V]
[1]	PA	51.2	19.5	3.1	150	-	1.2
[2]	PA	60	10	12.6	213	-	1
This Work	PA	60	19.5	9.4	139	-	1.2
[3]	Mix	60	<-4	-	70	-	1.5
[4]	Mix	56-65	<4	-5.6	24	0	1.6
This Work	Mix +PA	60	10.6	1.6	186	1	1.2

^[1] Y. Jin, et al., JSSC 2008 [2] N. Kurita, et al., RFIC 2009

^[3] S. Voinigescu, et al., ISCAS 2007 [4] F. Zhang, et al., EL 2008

まとめ

- ミリ波帯回路設計のために素子のモデリングを行った
 - トランジスタ
 - キャパシタ
 - 伝送線路
 - デカップリングキャパシタ
- モデリングを行うことでPAの利得のシミュレーションと実測との誤差を減らせた
 - 誤差 5 dB 0.5 dB以下
- 周波数ミキシング機能を持った60GHz帯送 信機を試作し、以下の性能を得た
 - 変換利得:10.6 dB、P1dB:1.6 dBm

