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A 0.027-mm2 Self-Calibrating Successive Approximation ADC Core
in 0.18-µm CMOS

Yasuhide KURAMOCHI†a), Nonmember, Akira MATSUZAWA††, Member,
and Masayuki KAWABATA†, Nonmember

SUMMARY We present a 10-bit 1-MS/s successive approximation
analog-to-digital converter core including a charge redistribution digital-
to-analog converter and a comparator. A new linearity calibration tech-
nique enables use of a nearly minimum capacitor limited by kT/C noise.
The ADC core without digital control blocks has been fabricated in a 0.18-
µm CMOS process and consumes 118 µW at 1.8 V power supply. Also,
the active area of ADC core is realized to be 0.027 mm2. The calibration
improves the SNDR by 13.4 dB and the SFDR by 21.0 dB. The measured
SNDR and SFDR at 1 kHz input are 55.2 dB and 73.2 dB respectively.
key words: analog to digital converter, charge redistribution type digi-
tal to analog converter, successive approximation architecture, calibration
technique

1. Introduction

Modern sub-micrometer CMOS process facilitates the re-
cent trend towards large mixed-signal system-on-chip (SoC)
solutions, which include not only digital circuitry but also
analog circuitry on the same die. Such systems on a single
chip allow the reduction of the size and power consump-
tion, which is especially important for portable devices [1].
In such a trend, analog-to-digital converters (ADC) become
increasingly important. As for the power and the area which
determine the cost, the implementation of ADCs is a dom-
inant problem on many SoC devices. To adapt it exactly to
many applications, many type of ADCs are used and pro-
posed. In these ADCs, successive approximation resister
analog-to-digital converter (SAR ADC) enables the imple-
mentation of a low power, small area, highly flexible ADC.
As for the speed of high resolution SAR ADC, improve-
ments in technology enable SAR ADC to be used in appli-
cations that require speed faster than several megahertz and
resolutions higher than 9-bit [2]–[5]. For higher frequency
applications, a parallel architecture like an interleaved ADC
is used [6]–[8]. Additionally high integration of digital cir-
cuits enables complex calibration for ADCs. Therefore the
interleaved ADCs have been applied to many mixed-signal
systems. However, parallel architectures usually require
large area and huge cost. Usable area in a LSI limits the
speed of interleaved ADC. Additionally, remotely-located
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ADCs cause timing and gain errors that degrade the reso-
lution of the whole ADC. Therefore the area of a unit ADC
must be reduced for high frequency applications by using an
interleaved architecture. This paper presents very small size
(0.05 mm2 [9] and 0.027 mm2) ADC cores using a simple
self-calibration technique.

2. Circuit Design

2.1 Charge Redistribution D/A Converter

A conventional SAR ADC is shown in Fig. 1. The ADC
is composed of a simple capacitive DAC with a track-and-
hold function which is called as charge redistribution DAC,
a comparator and a successive approximation logic. As no
components with large static current like an opamp are used,
a low power ADC can be realized easily. As for the area in
the ADC, the capacitive DAC is dominant. To shrink the
area of the ADC, the total capacitance must be decreased as
much as possible. However the minimum capacitor of the
DAC is determined by a kT/C noise limit. Ideally a total
capacitance CDAC of a single DAC is

CDAC =
kbT · 10

S NR
10

V2
FS−rms

(1)

where VFS−rms is the root-mean-square value of the full-
scale voltage, kb is the Boltzman constant and T is the tem-
perature. This characteristic is shown in Fig. 2. A desired
Signal-to-Noise Ratio (SNR) of the SAR ADC decides the
value of the DAC output capacitors. Therefore the total ca-
pacitor of the DAC should be designed to be a minimum
capacitance that the SNR allows.

Using a fully differential binary N-bit DAC, as many
as 2N+1 capacitors are needed. Moreover, the input band-
width and sampling frequency are limited by the total capac-
itance at the input node. To increase the operating speed and
maintain the desired SNR, the capacitance of the unit capac-
itor must be designed as small as possible in high resolution
ADC. Ref. [2] uses 1.5fF unit capacitor with a special topol-
ogy of metal capacitors. However it is difficult to control the
small capacitance under process variations. To avoid these
problems, a scaling capacitor technique like a C-2C DAC
can be used. When scaling capacitors are used in a DAC,
the area is affected by the combination of series and parallel
capacitors. To optimize the area, the charge redistribution
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Fig. 1 Successive approximation resister ADC.

Fig. 2 Minimum capacitance at the input node.

N-bit DAC is divided into K-bit DAC units composed of se-
ries and parallel binary capacitors as shown in Fig. 3. Also,
satisfying Eq. (1), an upper M-bit DAC is composed of a bi-
nary architecture. Leftover bits that cannot be realized by
K-bit unit DACs and a binary DAC, L-bit, is expressed as

L = (N − M) mod K. (2)

where L = 0 means that a dummy capacitor is directly con-
nected to a unit DAC of the least bit side. The total num-
ber of lower bit DAC capacitors, NUMcap, depended on the
number of parallel capacitors in the unit DAC is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NUMcap =
N − M − L

K

(
2K +

1
2K − 1

)

+
22L

2L − 1
(L � 0),

NUMcap =
N − M − L

K

(
2K +

1
2K − 1

)

+1 (L = 0).

(3)

The relationship between parallel capacitors and DAC
resolutions are indicated in Fig. 4. Thus a DAC with K = 2
and K = 3 parallel capacitors is effective in solving the area
problem. If MIM capacitors are used as series capacitor, a
linearity error caused by the bottom capacitance should be
considered carefully. DAC’s sensitivity to the bottom ca-
pacitor depends on the total capacitance at node “A.” Fig-

Fig. 3 N bit D/A converter with series capacitor.

Fig. 4 The number of capacitors for a lower bit DAC.

Fig. 5 The gain error caused by the bottom capacitors of series
capacitors.

ure 5 shows a DAC with parasitic bottom capacitors. The
equivalent capacitance of the DAC output must be equal to
the next upper bit capacitances, which is ideally C in this
case. The gain of the unit DAC is generally designed by
considering the bottom capacitor. However, in case of using
small unit capacitors, estimation errors concluding process
variation cannot be ignored, shown in Fig. 6. Large K val-
ues decreases the error of an equivalent capacitance at node
“A.” Considering the area efficiency and the error caused by
the MIM bottom capacitors, 3 bits parallel (K = 3) capac-
itors are used in this paper. As shown in Fig. 7, the lower
side in the main 10-bit DAC is composed of cascade connec-
tion with 3-bit unit DACs. The unit capacitor size is 20 fF
and the full scale voltage is 2.2 Vpp (differential). To realize
over 70 dB SNR, the total capacitance at the comparator in-
put node is designed to be 320 × 2 fF (differential), which is
composed of 4-bit binary.
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Fig. 6 The error of equivalent capacitance caused by an estimation error.

Fig. 7 Small size successive approximation A/D converter core (charge
redistribution D/A converter and comparator).

2.2 Calibration

Minimizing the unit capacitance and the total capacitance at
the comparator input cause mismatch error that is propor-
tional to 1/W. And the mismatch error causes linearity error
to increase. However, in this paper, to shrink the area of the
ADC, the dummy capacitors that are aligned around the ca-
pacitors of the DAC are removed. Linearity problems are
solved with calibration.

One calibration technique is reference voltage tuning
using resistor ladder, shown in Ref. [10], [11]. However the
resistor ladder needs static current and consumes large area.
Another technique is the use of capacitive calibration DAC
[12]. This technique has a characteristic of low power. This
section describes a new self-calibration technique using a
capacitive DAC. The calibration DAC (CAL DAC) is shown
in Fig. 7. This CAL DAC is connected to the output of
the MAIN DAC. The range of calibration is designed from
−16LSB to 16LSB with 1/4LSB step. The calibration sys-
tem is used for the measurement and the conversion, shown
in Fig. 8. The measurements of capacitor mismatch errors
are executed as show in Fig. 8(a). In this phase, the mea-
surement controller block sets up the main DAC to output

the error caused by mismatch errors of capacitors. The er-
rors are measured by the CAL DAC operating as SAR ADC.
Then the measured data are written to the Cal Memory. In
the conversion phase, the measured data is retrieved by the
main SAR logic and the errors of the main DAC are cali-
brated by the CAL DAC, as shown in Fig. 8(b).

The details of measurement sequences are as follows.
To simply describe the operation, a single mode and bi-
nary weighted configuration are used as example, shown
in Fig. 9. First, all the capacitors of the main DAC are
connected to VCM and discharged to zero. Then, shown
in Fig. 9(a), the CAL DAC operates like a SAR ADC and
searches the offset voltage, VOFFS ET . Using this opera-
tion, the offset data, defined as DOFF, can be obtained and
is stored in the Cal Memory. The next phase is the measure-
ment of capacitive mismatch errors which cause the linearity
errors. Figure 9(b) shows the ath-bit error, ΔCa err. In this
case, the output voltage of the DAC is expressed as follows.

VDAC

=
VREFP · (Ca+ΔCa err+CCALP)

Ca+ΔCa err+CCALP+CCALN+
a−1∑
m=1

Cm+Cdum+
N∑

m=a+1
Cm

+

VREFN ·
(
CCALN +

a−1∑
m=1

Cm + Cdum

)
+ VCM ·

N∑
m=a+1

Cm

Ca+ΔCa err+CCALP+CCALN+
a−1∑
m=1

Cm+Cdum+
N∑

m=a+1
Cm

(4)

In this case, the VCM is the middle of the reference voltage,
VREFP and VREFN . So the VCM is expressed as

VCM =
VREFP + VREFN

2
. (5)

The weight of the ath-bit is equal to the summation of
lower DAC and dummy cap which has the same weight as
the LSB weight, so the Ca can be obtained as

Ca =

a−1∑
m=1

Cm + Cdum (6)

Using (5) and (6), the output voltage VDAC can be modified
as

VDAC =

VCM

(
2Ca +

N∑
m=a+1

Cm

)

2Ca + ΔCa err + CCALP +CCALN +
N∑

m=a+1
Cm

+
VREFP (ΔCa err + CCALP) + VREFNCCALN

2Ca + ΔCa err + CCALP + CCALN +
N∑

m=a+1
Cm

(7)

Using a binary search algorithm with the comparator and the
SAR logic, the VDAC approximates the VCM. In this opera-
tion, the error of the Ca can be obtained as
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(a)

(b)

Fig. 8 System configuration (a) measurement mode (b) conversion
mode.

ΔCa err = CCALN − CCALP. (8)

And this data is defined as Da. The same operation is se-
quentially executed from (a + 1)-bit to N-bit. These mea-
sured data are also defined as Da+1, . . . , DN . However these
data contain the data of the previous sequence. So the data
must be separated before a conversion sequence begins.

Dcalk = Da − DOFF

Dcal (a+1) = Da+1 − Da

...

Dcal N = DN − DN−1 (9)

where the Dcal a, . . . ., Dcal N is the true calibration data of
the capacitive mismatch. The separations are executed in
the last sequences. The separated data are stored in the Cal
Memory. In this paper, the upper 6 bits are executed. In the
conversion sequence, the address is accessed and added to
the previous accessed data when a certain bit is called by the
SAR logic.

2.3 Comparator

The block diagram of the comparator is show in Fig. 10(a).
It is composed of the input switch matrix, two gain stages
with output offset cancel circuits, the latch stage and the tim-
ing generator. The preamplifier has PMOS diode loads and

(a)

(b)

Fig. 9 Error measurement (a) comparator offset (b) linearity.

cascode connection to decrease the mirror capacitance and
to isolate the input from the output (Fig. 10(b)). The total ef-
fective gain for a duration of 500 ps is designed to be about
18 dB. And the latch (Fig. 10(c)) has 240 ps propagation de-
lay at a 1/2 LSB input. The timing generator generates the
latch clock and the reset clock with non-overlapping control
so as to minimize the propagation delay.

Some conventional latches generate a large kickback
noise when the latch goes to the ON or OFF state. The kick-
back noise influences the output of the preamplifier, espe-
cially in the OFF state. The output of the amplifier must
be recovered before the next bit-cycle goes to the ON state.
However, using a high-speed bit-cycle, the output of the
amplifier cannot be recovered and the latch makes a wrong
judgment. To decrease the differential mode kickback noise,
the drain of the differential pair is connected first. Then the
latch turns to OFF state. This timing is generated by the se-
ries connection of two inverters. Using this technique, the
differential noise is suppressed effectively, from 8.0 mV to
330 µV under typical conditions with the SPECTRE simu-
lation.

2.4 Control Logic

The SAR logic of the conversion cycle uses a conventional
SAR algorithm. The total number of clock cycles is 12
clock cycles (1 sample, 11 conversions). The control logic
is needed to be flexibly programmable, therefore the SAR
logic, the calibration logic, memory and other control cir-
cuits are realized by using an off chip FPGA. In this sys-
tem, the conversion speed depends on the speed of the ex-
ternal FPGA. The Sequence Controller is composed of sev-
eral counters operating as bit cycles control and calibration
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cycles management. The Main DAC Setup Controller sets
the main DAC to operate as either a calibration mode or a
conversion mode. The SAR Logic operates for both oper-
ation modes. It is composed of temporary memories, DFF

(a)

(b) (c)

Fig. 10 Latched comparator (a) whole circuit (b) preamplifier (c) latch.

Fig. 11 Control logic.

Table 1 Estimated area of control logic circuits using internal logic com-
ponents.

and several logic circuits. The CAL Memory block has 6×8
bits memories, and the data is added to previous latched data
by the Adder, shown in Fig. 11. These data and control sig-
nals are selected by the MUX and shifted to a 1.8 V CMOS
Logic level. In consideration of on chip implementation, the
area of the control logic is estimated in the Table 1. The area
of logic components is standard size using 0.18 µm CMOS
technology. The area of the control logic using a internal
logic is estimated at 0.007 mm2. If the digital circuits are
implemented on-chip, this SAR ADC is expected to operate
at 28 MS/s according to SPECTRE simulation.

3. Measurements Results

The chip of ADC core was fabricated in 0.18 µm CMOS
process. The die photograph of the ADC core is shown
in Fig. 12. The active area of the ADC core is 85 µm ×
320 µm, 0.027 mm2. Using 12 MHz system clock (1 MS/s),
the ADC Core consumes 118 µW in 1.8 V power supply.
The conversion speed is limited by the control logic com-
posed of the external FPGA. Figure 13 shows the measured
spectrums at 1 kHz input. Using the proposed calibration
technique, the harmonic distortion are reduced by −21.0 dB.
Thus the linearity is improved significantly. The calibrated
ADC exhibits an SNDR and SFDR (@Nyquist) of 53.8 dB
and 72.1 dB, respectively, as shown in Fig. 14 and Fig. 15.
With the calibration it achieves 13.4-dB improvement of
SNDR. At the nyquist frequency, 12.8-dB improvement can
be achieved. Though the CAL DAC has calibrated resolu-
tion under 1 LSB, the SNDR for low-frequency input signal
is 55.2 dB. The accuracy is limited by underestimated sen-
sitivity of the comparator. Finally, the measurements are
summarized in Table 2.

4. Conclusion

A new self-calibrating ADC core is proposed in this pa-
per. Using the area optimization of the Main DAC and the
self-calibrating system, the active area of the ADC core can

Fig. 12 Die photo.
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(a)

(b)

Fig. 13 Measured spectrums (Fs = 1 MSps, 1 kHz input). (a) Calibration
off (b) Calibration on.

Fig. 14 Measured SNDR versus input frequency.

Fig. 15 Measured SFDR versus input frequency.

be 85 µm × 320 µm. With 12 MHz system clock (1 MS/s),
the ADC consumes 118 µW. The calibrated ADC exhibits
an SNDR and SFDR (@Nyquist) of 53.8 dB and 72.1 dB,
respectively. With the calibration it achieves 13.4-dB im-
provement of SNDR and 21.0-dB improvement of SFDR.
The ADC chip was fabricated in a 0.18 µm CMOS process.

Table 2 Summary of measurements.
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