A 0.026 mm² Capacitance-to-Digital Converter for Biotelemetry Applications Using a Charge Redistribution Technique

<u>Kota Tanaka</u>, Yasuhide Kuramochi, Takashi Kurashina, Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

Outline

- Motivation
 - Capacitive sensor interface circuits
- Concept
 - Sensor problem and solution
- Proposed circuit
 - Operation
- Measurement results
- Conclusion

Motivation

Increasing demand for wireless healthcare systems

Ex1) A patch to monitor [1] •Blood pressure •Heart rate

Other vital signs

Ex2) Swallowable capsule endoscope for monitoring stomach and intestine. [2]

[1] [Online] http://news.com.com/The+next+thing+on+the+Net+Your+cardio+system/2100-11395_3-5865625.html [2] [Online] http://www.rfsystemlab.com/sayaka/

Motivation

Some wireless healthcare systems require pressure measurement. (e.g., blood pressure, sound pressure)

A capacitive pressure sensor interface circuit

Target Application

Sensor interface for **Bladder monitoring**

3 days pressure measurement

[Online] http://ja.wikipedia.org/wiki/%E8%86%80%E8%83%B1 ,Under GDFL licence http://ja.wikipedia.org/wiki/Wikipedia:Text_of_GNU_Free_Documentation_License

Components of the Urinary System

Bladder monitoring system

- -Low power : 100 μ A order battery
- -Small size : 8mm x 5mm

Capacitive sensor interface

Conventional circuits

- •C/Volt converter & ADC [3] © large area and high power consumption
- •C/Digit converter ($\Delta\Sigma$ type) [4,5] < 4.25 mW \bigcirc Opamp: high power consumption

[3] J. C. Lotters et al. "A sensitive differential capacitance to voltage converter for sensor applications," 1999.

[4] M. Yamada and K. Watanabe, "A capacitive pressure sensor interface using oversampling Δ - Σ demodulation techniques," 1997.

[5] Analog Devices "AD7745" Available:http://www.analog.com/jp/prod/0,,760_1077_AD7745,00.html

SAR C/D converter

SAR (Successive Approximation Register) + capacitive sensor

- Composer (no opamp)
- 😳 Small area

C Robustness to supply voltage fluctuations

Problem of capacitive sensors

Dynamic range does not match

Proposed solution (1 of 2)

- 1.Sensor capacitance scaling
- \Rightarrow Any large sensor capacitance can be measured.

Proposed solution (2 of 2)

2.Offset canceling Converter range is shifted to the scaled sensor range

Full range conversion

- -Sensor capacitance scaling
- -Offset canceling

Full range conversion can be achieved

Proposed circuit

Offset canceling capacitor array

Sensor capacitance scaling
k : Scaling factor

-Offset canceling

Offset canceling operation

The Sensor shows offset capacitance

Offset canceling (1 of 5)

Store charge to the sensor

Offset canceling (2 of 5)

Charge conservation

Offset canceling (3 of 5)

Charge redistribution

Offset canceling (4 of 5)

Offset canceling (5 of 5)

Charge redistribution and comparison sequence proceeds

Comparison sequence

Operation

Converting the varying part of the sensor's capacitance

Operation (1 of 3)

Store charge to the sensor

Operation (2 of 3)

Charge conservation

Operation (3 of 3)

3. MSB conversion

$$\frac{V_{\text{DD}}}{C_{\text{total}}} \left(\sum C_{\text{R}} + C_{\text{MSB}} - kC_{x}\right) > 0?$$

Conversion features

$$\frac{V_{\text{DD}}}{C_{\text{total}}} \left(\sum C_{R} + C_{\text{MSB}} - \underline{k}C_{x}\right) > 0?$$

- 1. V_{DD} does not affect conversion result V_{DD} : Supply voltage
- 2.Offset canceling
 - **C**_R : Offset canceling capacitor
- **3.Sensor capacitance scaling**
 - <u>k</u> : Scaling factor

Chip photo

Area : 0.026 mm² Total capacitance : 6 pF 25

MEMS sensor experiment

Measurement results (1)

Resolution	8 bit		
Supply Voltage	1.0-1.8 V		
Sampling Rate	262 kHz		
SNR	43.22 dB		
ENOB	6.83 bit		
Current	169 μA @V _{DD} = 1.4 V		
Consumption			
DNL	-0.97 to 0.79 LSB		
INL	-1.27 to 0.99 LSB		
Area	0.026 mm ²		
Total	6 pF,		
Capacitance	including 3.6 pF offset canceling cap		

Measurement results (2)

The same SNR for a supply voltage of 1.0 V to 1.8 V

Supply Voltage	1.0 V	1.4 V	1.8 V
SNR	43.4 dB	43.2 dB	43.2 dB
ENOB	6.88 bit	6.83 bit	6.84 bit

*Bias voltage is changed in proportion to supply voltage.

Conclusion

A capacitive pressure sensor interface circuit is proposed.

It is suited for wireless healthcare systems.

© Features

- -Low power consumption : 236 μ W
- •Small area: 0.026 mm²
- •Robustness: tolerance for V_{DD} fluctuation
- •Full dynamic range conversion

Thank you for your interest!

Kota Tanaka, astrokt@ssc.pe.titech.ac.jp