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Abstract - We present a 10-bit 1-MS/s successive
approximation analog-to-digital converter core including a
charge redistribution digital-to-analog converter and a
comparator. A new linearity calibration technique enables use of
a nearly minimum capacitor limited by kT/C noise. The ADC
core without Digital blocks has been fabricated in a 0.18-pm
CMOS process and consumes 110pW at 1.8 V power supply.
With the calibration it achieves 9.0-dB improvement of SNDR
and 23.3dB improvement of SFDR. The measured SNDR and
SFDR are 51.1 dB and 69.8 dB respectively.

I. INTRODUCTION
Successive approximation resister type analog-to-digital
converter (SAR ADC) enables the implementation of a low
power, small area, highly flexible ADC. As for the speed of
high resolution SAR ADC, improvements in technologies
make it possible to use SAR ADC for Applications around
several tens of megahertz. For higher frequency Applications,
parallel architectures like a interleaved ADC are used.
Additionally high integration of digital circuits enables
complex calibration for ADCs. Therefore the interleaved
ADCs have been applied to many mixed-signal systems.
However parallel architectures need large area. Usable area in
a LSI limits the speed of interleaved ADC. So the area of a
unit ADC must be reduced for high frequency applications.
This paper presents a very small size (0.05mm”) ADC core

using a simple self-calibration technique.
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Fig. 1. Successive Approximation A/D Converter
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II. CIRCUIT DESIGN

A. Charge Redistribution D/A Converter

A conventional SAR ADC is show in Fig.1. The ADC is
composed of a simple capacitive DAC, a comparator and
successive approximation logic. Because no components with
large static currents like an opamp are used, a low power
ADC can be realized easily. As for the area, the capacitive
DAC is dominant. To shrink the area of the ADC, the total
capacitor must be decreased as much as possible. However
the minimum capacitor of the DAC is decided by a kT/C
noise limit. As shown in Fig.2, a desired Signal-to-Noise
Ratio (SNR) of the SAR ADC decides the value of the DAC
output capacitors. Therefore the total capacitor of the DAC
should be designed to be a minimum capacitance that the
SNR allows. Using a binary N-bit DAC, 2~ capacitors are
needed. So the capacitance of a unit capacitor must be small
[1]. A low resolution ADC (6 bits) using SAR technology has
been used to realize a small ADC (0.06mm’ with digital) [2].
Also Ref [2] applied a technique like a C-2C DAC. This C-2C
type DAC with series capacitors can realize a small area. A
N-bit DAC model composed of series and parallel binary
capacitors is shown in Fig.3. It is divided in unit DACs that
have one series capacitor and parallel binary capacitors. The
total number of capacitors depends on the number of parallel
capacitors in the unit DAC. Its relationship between parallel
capacitors and DAC resolution is indicated in Fig.4. Thus a
DAC with k=2 and k=3 parallel capacitors is effective in
solving the area problem. If MIM capacitors are used as series
capacitor, a linearity error caused by a bottom capacitance
should be considered. The error of the bottom capacitor
depends on the total capacitors at node “A”. The large
parasitic capacitance at the node is desirable. In this paper, 3
bits parallel (k=3) capacitors are used. As shown in Fig.5, the
main DAC is composed of 10 bits resolution. The unit
capacitor size is 20fF and the full scale voltage is 2.2Vpp
(differential). The total capacitance at the comparator input
node becomes 320*2 fF(differential).
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Fig. 2. Minimum Capacitance at the Input Node of a Comparator
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Fig. 4. The Number of Capacitors for a Charge Redistribution DAC

B. Calibration

Minimizing the unit capacitance and the total capacitance at
the comparator input, will cause the mismatch error that is
proportional to 1/W and the sensitivity to parasitic elements
to increase in contribution considerably. However, in this
paper, the dummy capacitors that are aligned around the
capacitors of the DAC are removed, to shrink the area of the
ADC. Linearity problems are solved with a calibration.

One calibration technique is reference voltage tuning using
resistor ladder, shown in [3], [4]. Another technique is the use
of capacitive calibration DAC [5]. This technique has a
characteristic of low power. This section describes a new
calibration technique using a capacitive DAC.

The calibration DAC (CAL DAC) is shown in Fig.6. This
CAL DAC is connected to the output of the MAIN DAC. In
this paper, the range of calibration is designed from -16LSB
to 16LSB with 1/4LSB Step. The calibration system and its
operation are shown in Fig.6. The measurements of capacitor
mismatches error are executed (Fig.6 (a)). In this phase, the
measurement controller block sets up the main DAC to output
the error caused by mismatch error of capacitors. The errors
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Fig. 3. N bit D/A Converter with Series Capacitor
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Fig. 5. Small Size Successive Approximation A/D Converter Core

(Charge Redistribution D/A Converter and Comparator)

are measured by the CAL DAC operating as SAR ADC. Then
the measured data are written to the cal memory. The data are
called by the main SAR logic and the errors of the main DAC
are calibrated by the CAL DAC (Fig.6 (b)). The detail of
measurement sequences are as follows. First all capacitors are
discharged to the common voltage, Vcy. Then, shown in Fig.7
(a), all the capacitors of the main DAC are connected to V.
Next, the CAL DAC operates like a SAR ADC and searches
the offset voltage, Vogrser- The next phase is the measurement
of the linearity error. Figure 7(b) shows that of k™ bit error,
ACy o In this case, the output voltage of the DAC is
expressed as follows.

Voo {2Ck + Ceq(k+l~N)}' Vem
e {2Ck + Ceq(k+1~N)}+ Ackierr + Ccal
(ACk_err Vrer car +Cear "VREF CaL )
{2Ck + Ceq(k+l~N)}+ Ackierr + Ccul

Then the Vpac approximates the Vey with the SAR algorithm.
The calibration data can be obtained as follows.

Veer car =Vrern, Cea = ACk o )

()
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where VCM:( VREFP+VREFN)/27 Ck:Ceq(oNk_l). Note that Ceq(k+1~N)
is the equivalent capacitance from Ciy; to Cn, Ceqouicry 15 the
equivalent capacitance from C, to Cy, and Cy is the
capacitance of k™ bit. With the same process, the calibrations
are executed from k™ bit to N™ bit. In this paper, the upper 6
bits are calibrated. The measurement data duplicate between
k™ bit and (k+1)™ bit. Therefore these data are calculated and
separated beforehand and written to the cal memory.

C. Comparator

The comparator and its components are show in Fig.8. The
comparator is composed of two preamplifiers (Fig.8 (b)) and a
latch (Fig.8(c)). Each preamplifier employs output offset
cancellation. The timing generator generates the latch clock
and the reset clock to minimize the propagation delay of the
comparator. The preamplifier has PMOS diode loads and
cascode connection to decrease the mirror capacitance and to
isolate the input from the output. Some conventional latches
generate a large kickback noise when the latch goes to the ON
or OFF state. The kickback noise influences the output of the
preamplifier, especially in the OFF state. To decrease the
differential mode noise, the drain of the differential pair is
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Fig. 8. Latched Comparator (a) Whole Circuit (b) preamplifier (c) latch
connected first. Then the latch turns to OFF state. Using this
technique, the differential noise is suppressed effectively.
With the simulation it achieves 86% noise improvement. This
is suitable for a high speed ADC. The propagation time is
designed to become less than 240ps (1/2 LSB input).

D. Control Logic

The SAR logic of the conversion cycle is the conventional
SAR algorithm. The total number of clock cycles is 12 clock
cycles (1 Sample, 11 Conversion) . The control logic is needed
to be flexibly programmable. So the SAR logic, the
calibration logic, memory and other control circuits are
composed with an off chip FPGA (Altera EP1K10). In this
system, the conversion speed depends on the speed of the
FPGA. In consideration of on chip implementation, only a
6x8 bits memory, SAR logic and one 8 bits Adder are needed.
They occupy a very small area. If the digital circuits are
implemented on a chip, this SAR ADC is expected to operate
at 28MS/s according to SPECTRE simulation.
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IIT. MEASUREMENTS RESULTS

The ADC chip was fabricated in a 0.18um CMOS process.
The die photograph and Layout of the ADC is shown in Fig. 9.
The active area of the ADC is 95um x 550pum. With 12MHz
system clock (1MS/s), the ADC consumes 110pW. The
calibrated ADC exhibits an SNDR and SFDR (@Nyquist) of
51.1dB and 69.8dB, respectively, as shown in Fig. 10 and
Fig.11. With the calibration it achieves 9.0-dB improvement
of SNDR and 23.3-dB improvement of SFDR. Though the
CAL DAC has calibration resolution under 1 LSB, the SNDR
for low-frequency input signal is 52.3dB. The accuracy is
limited by underestimated comparator noise and gain. Finally,
the measurements are summarized in Table I.

IV. CONCLUSION

A small size SAR ADC core has been presented that uses an
internal small CAL DAC to achieve desensitization to
mismatch for capacitors. The calibration technique enables to
use a nearly minimum capacitor limited by kT/C noise. Using
the capacitive type SAR ADC in the conversion and the
calibration, extremely low power (110uW) and small size
(0.05mm?) can be realized.
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TABLE I
SUMMARY OF MEASUREMENTS
Process 0.18um, 1 poly, 6metal CMOS

Resolution 10bits

Active Area 95um x 550um
Sampling Rate IMSps

Analog Power 110uW @1.8V
SNDR @nyquist 51.1dB
SFDR @nyquist 69.8dB
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